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Abstract

Abstract. Bovine Tuberculosis (BTB) is a disease that can attack humans through cattle.The process of
transmission can occur through the air and cattle products that are not treated properly. When humans are
infected with BTB, reinfection, and relapse may occur. This phenomenon is modeled as an eleven-dimension
dynamical system. Our aim is to gain insight into the effect of separation of human activity area into the
transmission dynamics of BTB. The model incorporates (among many others features) the dynamics of BTB
among human and cattle population, density-dependent infection rate, and reinfection, are rigorously analyzed
and simulated. The trivial disease-free equilibrium of the model is shown to be locally asymptotically stable
when the two associated basic reproduction number are less than unity. Although the non-trivial equilibrium
cannot be shown explicitly, for a special case, this equilibrium is still possible to show and discuss further.
Our results suggest that controlling BTB in cattle population may indirectly control the spread of BTB in
human. An example of controlling the infected population of infected cattle can be done with the annihilation
of infected cattle.
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1. INTRODUCTION

Mycobacterium Bovis (M. Bovis) is a bacterium that causes zoonotic disease specifically Bovine Tubercu-
losis (BTB). M. Bovis has a wide range of prospective infected hosts such as cattle and human beings [1].
BTB in cattle initially attacks the lymph which then spread to the lungs. In addition, BTB can also attack
the mammae tissue which causes the cattle with BTB disease can also transmit M. Bovis to younger cattle
through breastfed [2]. Transmission of BTB in cattle majority occurs through the air. Transmission from
animals to humans happens because unfermented milk or undercooked meat. BTB can also be transmitted
to humans by air if there is direct contact with BTB infected animals [3].

Bovine Tuberculosis in humans may develop reinfection and relapse same as TB in general. Reinfection
occurs when individuals who have had BTB disease are depleted of their immune period and decreased
their body defenses. While relapse usually occurs when individuals with BTB not completing the medication
prescribed by the doctor or taking wrong medications. The possibility of relapse is between 2-6% for the
BTB case [4].

Development in applied mathematics such as mathematical models can be used to control the spread of
existing diseases like BTB. For example, author in [5] discusses the optimal control over TB and MDR-TB
handling. Furthermore Florian M. etc. [6] discusses about TB disease in humans with reinfection and relapse.
Research that discusses the BTB also varied to solve the problem of BTB. As an example Hassan A. S.,
Garba S. M. and Gumel A. B [7] which discusses the spread of TB in human and animal populations caused
by two different bacteria. In addition, De Vos V., Bengis R. G. and Kriek N. [9] discussed the spread of BTB
in buffalo population.

In this paper, we will discuss BTB disease in human and cattle population. The model used is based on
the deterministic model on [8] which discussed about the spread of BTB in the human and cattle population
in Morocco. In this article we add reinfection process and relapse in the human population caused by
Myvobacterium Bovis based on [10,11] and also separating human population into two big population, based
on their probability to contact with cattle population. The layout of the article is the following: In section
2, the model construction will be discussed and followed with mathematical analysis in section 3. Some
numerical simulations based on the basic reproduction number is given in section 4. Some conclusions is
given in section 5.

Received March 15th, 2019, September 22nd, 2019 (first), 2019, October 4th, 2019 (second), Accepted for publication October 5th,
2019. Copyright ©2019 Published by Indonesian Biomathematical Society, e-ISSN: 2549-2896, DOI:10.5614/cbms.2019.2.1.6



56 Aldila et al.

Figure 1: Transmission diagram of BTB model in system 1.

2. MATHEMATICAL MODEL CONSTRUCTION

The idea of the model is to divide the human population into type compartments (yi) and (zi), which have
and have not direct contact with cattle, respectively. The index i = 1, 2, 3, 4 denote the susceptible, exposed,
infectious, and recovered having immunity status. On the other hand, cattle population only divided into
susceptible (x1), exposed (x2) and infectious (x3) compartment. Here there is no recovered compartment
due to the relatively short life time of cattle before they are sent to the market. The transmission diagram of
the Bovine tuberculosis is given in Figure 1.

Based on the transmission diagram in Figure 1, the mathematical model which describe the spread of BTB
among human and cattle population is given by :

dx1
dt

= bx −
βxx1x3
Nx

− µxx1 (1a)

dx2
dt

=
βxx1x3
Nx

− αxx2 − µxx2 (1b)

dx3
dt

= αxx2 − µxx3 (1c)

dy1
dt

= by −
β1y1x3
Nx

− β2y1y3
Ny +Nz

− β2y1z3
Ny +Nz

− µyy1 (1d)

dy2
dt

=
β1y1x3
Nx

+
β2y1y3
Ny +Nz

+
β2y1z3
Ny +Nz

+
β1y4x3
Nx

+
β2y4y3
Ny +Nz

+
β2y4z3
Ny +Nz

− αy2 − µyy2 (1e)

dy3
dt

= αy2 + δy4 − γy3 − µyy3 (1f)

dy4
dt

= γy3 − δy4 −
β1y4x3
Nx

− β2y4y3
Ny +Nz

− β2y4z3
Ny +Nz

− µyy4 (1g)

dz1
dt

= bz −
β2z1z3
Ny +Nz

− β2z1y3
Ny +Nz

− µyz1 (1h)

dz2
dt

=
β2z1z3
Ny +Nz

+
β2z1y3
Ny +Nz

+
β2z4z3
Ny +Nz

+
β2z4y3
Ny +Nz

− αz2 − µyz2 (1i)

dz3
dt

= αz2 + δz4 − γz3 − µyz3 (1j)

dz4
dt

= γz3 − δz4 −
β2z4z3
Ny +Nz

− β2z4y3
Ny +Nz

− µyz4, (1k)

supplemented with initial conditions xi(t = 0) = xio for i = 1, 2, 3 and yi(t = 0) = yi0, zi(t = 0) = zi0 for
i = 1, 2, 3, 4 are given and positive.
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Please note that the total of cattle population is given by:

dNx
dt

=
dx1
dt

+
dx2
dt

+
dx3
dt

= bx − µx(x1 + x2 + x3) = bx − µxNx. (2)

This is means that number of cattle of population is only depending on birth and natural death rate. Similarly,
for human population we have :

dNy
dt

=
dy1
dt

+
dy2
dt

+
dy3
dt

+
dy4
dt

= by − µy(y1 + y2 + y3 + y4) = by − µyNy, (3)

and
dNz
dt

=
dz1
dt

+
dz2
dt

+
dz3
dt

+
dz4
dt

= bz − µy(z1 + z2 + z3 + z4) = bz − µyNz, (4)

which also tells us that total of human populations are only depend on birth and natural death rate.
In the next section, mathematical analysis regarding the existence and local stability of equilibrium points

together with the basic reproduction number will be discussed.

3. MATHEMATICAL ANALYSIS

Since we have the cattle and human population are constant whenever bx = µxNx, by = µyNy and
bz = µyNz , assumingx̄i = xi

Nx
, ȳj =

yj
Ny
, z̄j =

zj
Nz

, for i = 1, 2, 3 and j = 1, 2, 3, 4, we scaled BTB model
in equation 1 into:

dx̄1
dt

= µx − bxx̄1x̄3 − µxx̄1 (5a)

dx̄2
dt

= bxx̄1x̄3 − αxx̄2 − µxx̄2 (5b)

dx̄3
dt

= αxx̄2 − µxx̄3 (5c)

dȳ1
dt

= µy − b1ȳ1x̄3 − b2ȳ1 [(1− ρ)ȳ3 + ρz̄3]− µy ȳ1 (5d)

dȳ2
dt

= b1ȳ1x̄3 + b2ȳ1 [(1− ρ)ȳ3 + ρz̄3] + b1ȳ4x̄3 + b2ȳ4 [(1− ρ)ȳ3 + ρz̄3]− αȳ2 − µy ȳ2 (5e)

dȳ3
dt

= αȳ2 + δȳ4 − γȳ3 − µy ȳ3 (5f)

dȳ4
dt

= γȳ3 − δȳ4 − b1ȳ4x̄3 − b2ȳ4 [(1− ρ)ȳ3 + ρz̄3]− µy ȳ4 (5g)

dz̄1
dt

= µy − b2z̄1 [ρz̄3 + (1− ρ)ȳ3]− µy z̄1 (5h)

dz̄2
dt

= b2z̄1 [ρz̄3 + (1− ρ)ȳ3] + b2z̄4 [ρz̄3 + (1− ρ)ȳ3]− αz̄2 − µy z̄2 (5i)

dz̄3
dt

= αz̄2 + δz̄4 − γz̄3 − µy z̄3 (5j)

dz̄4
dt

= γz̄3 − δz̄4 − b2z̄4 [ρz̄3 + (1− ρ)ȳ3]− µy z̄4, (5k)

where bx = βx, b1 = βh1, b2 = βh2, N = Ny +Nz and ρ =
Ny
N . Later in the rest of this article, for the sake

of written simplification, we rewrite x̄i as xi again, and also for ȳi and z̄i.
It is easy to prove that for all non-negative initial condition for xi, yj and zj , then the solutions of the

model 5 are non-negative for all t ≥ 0 and bounded in the following region.

Φ =
{

(x1, x2, x3, y1, y2, y3, y4, z1, z2, z3, z4) ∈ R11
+ : 0 ≤ xi ≤ 1, 0 ≤ yj ≤ 1, 0 ≤ zj ≤ 1

}
, (6)

for i = 1, 2, 3 and j = 1, 2, 3, 4.
Our first analysis is to determine the equilibrium points and their local stability criteria. Before we analyze

the model in their complete form, please note that the transmission process in the cattle population is closed
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to their own population, since infection in cattle population occur only from direct contact between cattle.
Therefore, if the BTB initially coming from cattle population in time t = 0, then the existence of BTB in
human population are also depending on the endemic of BTB in cattle. But instead, the endemic of BTB in
cattle do not depend on the endemic of BTB in human population.

There are two equilibrium point in cattle population, i.e the disease free equilibrium (ω1) which given by

ω1 = (x1, x2, x3) = (1, 0, 0) , (7)

and the endemic equilibrium point (ω2) which given by

ω2 = (x1, x2, x3) =

(
µx (αx + µx)

αxbx
,
µ2
x (Rx − 1)

bxαx
,
µx (Rx − 1)

bx

)
, (8)

where Rx = αxbx
µx(µx+αx)

. It can be seen that ω1 always has a biological interpretation for all parameters,
while ω2 ∈ R3

+ where Rx > 1. Next, we analyze the local stability criteria of ω1 and ω2 using their Jacobian
matrix. The Jacobian matrix of the cattle sub-population evaluated in ω1 is given by

Jω1
=

 −µx 0 −bx
0 −αx − µx bx

0 αx −µx

 ,
with the characteristic polynomial for the eigenvalue is

f(ω1) = (λ+ µx)
(
λ2 + (αx + 2µx)λ+ (1−Rx)µx(αx + µx)

)
.

It is easy to see that ω1 is locally asymptotically stable when Rx < 1.
Similarly, the local stability of ω2 also analyzed with the Jacobian matrix approach. The Jacobian matrix

of ω2 is

Jω2
=


−αxbx−αxµx−µx

2

αx+µx
− µx 0 −µx(αx+µx)αx

αxbx−αxµx−µx2

αx+µx
−αx − µx µx(αx+µx)

αx

0 αx −µx

 .
The characteristic polynomial for the eigenvalues of Jω2

is given by

f(ω2) =

3∑
k=0

akλ
k,

where a0 = Rx − 1, a1 = αxbx(αx + 2µx), a2 = αx(αx + bx + 3µx) + 2µ2
x, and a3 = αx + µx. Based on

the Routh-Hurwitz stability criteria, we have that ω2 is locally asymptotically stable if Rx > 1. These result
is written in the following theorem.

Theorem 3.1. The cattle population in system 5 has a disease free equilibrium ω1 = (1, 0, 0) and locally
asymptotically stable ifRx < 1. In the other hand, the endemic equilibrium ω2 =

(
αx(αx+µx)

αxbx
,
µ2
x(Rx−1)
bxαx

, µx(Rx−1)bx

)
is exist and locally asymptotically stable if Rx > 1.

Next we analyze the equilibrium point of the complete model 5. Please note that the BTB can spread
among human population because of direct contact between human or with cattle. Therefore, if the BTB
already exist in t = 0, then BTB might still occur in human population for t → ∞ even though it already
extinct in the cattle population.

The disease free equilibrium of BTB model (5) is given by

Ω1 = (x1, x2, x3, y1, y2, y3, y4, z1, z2, z3, z4) = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) . (9)
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Similar with previous way, we analyze the local stability criteria of Ω1 using the Jacobian matrix. There are
6 negative eigenvalues, while the other five eigenvalues is given by

F(Ω1) =

(
3∑
k=0

ckλ
k

)(
2∑
k=0

dkλ
k

)
, (10)

where c0 = (1−Ry)µy(µy+α)(γ+δ+µy), c1 = (R2 − 1)
[
α(γ + δ) + 2µy(α+ δ + γ) + 3µ2

y

]
, c2 = α+

δ+γ+3µy, c3 = 1, d0 = (1−Rx)µx(αx+µx), d1 = αx+2µx and d2 = 1, where Ry =
αb2(δ+µy)

µy(α+µy)(γ+δ+µy)
,

R2 = αb2
α(γ+δ)+2µy(α+δ+γ)+3µ2

y
, and it always hold that R2 < Ry . According to Routh-Hurwitz criteria, we

have that the Ω1 is locally asymptotically stable if Rx < 1, and Ry < 1. These results, stated in the following
theorem.

Theorem 3.2. BTB model in system (5) has a disease-free equilibrium Ω1 and locally asymptotically stable
if Rx < 1, and Ry < 1.

3.1. Basic reproduction number R0

Basic reproduction number define as expected number of secondary cases caused by one primary case
during one infection period in a completely susceptible population [20]. Using the next generation matrix
approach [21] , BTB model in system 5 has the basic reproduction number given by

R0 = max {R0x,R0y} , (11)

where R0x = αxbx
µx(µx+αx)

, R0y =
αb2(δ+µy)

µy(α+µy)(γ+δ+µy)
. It can be seen that there is no ρ appear in R0. Previously

stated, ρ define as the ratio between human who can not contact with cattle and all population. The reason
is since in our model, this two population can make a mass contact between them without any restriction.
Therefore, these two population can be treated as one same population, N . Again, since R0x = Rx and
R0y = Ry , we have the following corollary.

Corollary 3.2.1. The disease free equilibrium Ω1 is locally asymptotically stable if R0x < 1, and R0y < 1 .

Since cattle population is closed with infection from human population, therefore we have at least two
possibility of endemic equilibrium, i.e.

1) BTB persist only in human (Ω2) = (1, 0, 0, y1, y2, y3, y4, z1, z2, z3, z4).
2) BTB persist in human and cattle population (Ω3) = (x∗1, x

∗
2, x
∗
3, y1, y2, y3, y4, z1, z2, z3, z4), where x∗i

is given by ω2 in 8.
The endemic equilibrium point of BTB model 5 can not be shown explicitly. Therefore, we show this
equilibrium point as a function depending on x1, x2, x3 (given by ω0 or ω1) and y3 and z3. These equilibrium
point given by

y∗1 =
µy

−ρ b2y3 + ρ b2z3 + b1x3 + b2y3 + µy
,

y∗2 =
y3

(
−γ ρ b2y3 + γ ρ b2z3 − ρ b2µyy3 + ρ b2µyz3 + γ b1x3 + γ b2y3 + b1µyx3 + b2µyy3 + δ µy + γ µy + µy

2
)

(−ρ b2y3 + ρ b2z3 + b1x3 + b2y3 + δ + µy)α
,

y∗4 =
γ y3

−ρ b2y3 + ρ b2z3 + b1x3 + b2y3 + δ + µy
,

z∗1 =
µy

−ρ b2y3 + ρ b2z3 + b2y3 + µy
,

z∗2 =
z3

(
γ ρ b2y3 − γ ρ b2z3 + ρ b2µyy3 − ρ b2µyz3 − γ b2y3 − b2µyy3 − δ µy − γ µy − µy

2
)

(ρ b2y3 − ρ b2z3 − b2y3 − δ − µy)α
,

z∗4 =
γ z3

−ρ b2y3 + ρ b2z3 + b2y3 + δ + µy
, (12)
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while y3 and z3 are taken from positive intersection between two following polynomial
G1(y3, z3) = µy(

((
α + γ + µy

)
z3 − α

)
(−ρ z3 + y3 (ρ − 1))

2
b2

2
+ z3µy

(
δ + γ + µy

) (
α + µy

)(((
δ + γ + 2µy

)
α + µy

(
δ + 2 γ + 2µy

))
z3 − α

(
δ + µy

))
(−ρ z3 + y3 (ρ − 1)) b2),

G2(y3, z3) = −µy(b2
2

(ρ − 1)
2 (
α + γ + µy

)
y3

3 − α (ρ b2z3 + b1x3)
(
ρ b2z3 + b1x3 + δ + µy

)
−2 b2

(((
(z3 + 1/2)α +

(
γ + µy

)
z3

)
ρ − α/2

)
b2 +

(
b1x3 + µy + δ/2 + γ/2

)
α + µy

2
+ (b1x3 + δ/2 + γ)µy + γ b1x3

)
(ρ − 1) y3

2

+
((

(z3 + 2)α +
(
γ + µy

)
z3

)
ρ − 2α

)
z3ρ b2

2
y3 +

(
b1x3 + µy

) ((
b1x3 + δ + γ + µy

)
α + µy

2
+ (b1x3 + δ + γ)µy + γ b1x3

)
y3(((

(2 z3 + 1)µy + 2 x3 (z3 + 1) b1 + (δ + γ) z3 + δ
)
α + 2 z3

(
µy

2
+ (b1x3 + δ/2 + γ)µy + γ b1x3

))
ρ − α

(
2 b1x3 + δ + µy

))
b2.

Next, we analyze the existence of the non-trivial equilibrium point for a simple case, i.e when only human
who had possibility to contact with cattle exist (Nz = 0, Ny 6= 0).

3.2. Endemic equilibrium for a special case (Nz = 0)

In a simple case, when Nz = 0 (human only live in areas that allow contact with cattle), System 5 reduced
into:

dx̄1
dt

= µx − bxx̄1x̄3 − µxx̄1 (13a)

dx̄2
dt

= bxx̄1x̄3 − αxx̄2 − µxx̄2 (13b)

dx̄3
dt

= αxx̄2 − µxx̄3 (13c)

dȳ1
dt

= µy − b1ȳ1x̄3 − b2ȳ1 [ȳ3]− µy z̄1 (13d)

dȳ2
dt

= b1ȳ1x̄3 + b2ȳ1 [ȳ3] + b1ȳ4x̄3 + b2ȳ4 [ȳ3]− αȳ2 − µy ȳ2 (13e)

dȳ3
dt

= αȳ2 + δȳ4 − γȳ3 − µy ȳ3 (13f)

dȳ4
dt

= γȳ3 − δȳ4 − b1ȳ4x̄3 − b2ȳ4 [ȳ3]− µy ȳ4. (13g)

The disease free equilibrium Γ1 is given by

Γ1 = (x1, x2, x3, y1, y2, y3, y4) = (1, 0, 0, 1, 0, 0, 0) , (14)

BTB endemic equilibrium only in human population is given by

Γ2 = (x1, x2, x3, y1, y2, y3, y4) =
(
1, 0, 0, y+1 , y

+
2 , y

+
3 , y

+
4

)
, (15)

where y+1 =
µy

µy+y3b2
, y+2 =

y3(b2(γ+µy)y3+µy(δ+γ+µy))
(δ+µy+y3b2)α

, y+4 = γ y3
y3b2+δ+µy

, while y+3 is taken from the
positive root of three degree polynomial

H1(y3) =

3∑
i=0

aiy
i
3 = 0, (16)

where a0 = 0, a1 = (R0y − 1)µy(α+ µy)(γ + δ+ µy), a2 = (R3 − 1)(α(γ + δ) + 2µy(α+ γ + µy)) + δµy
and a3 = 1. Since a0 = 0, we have one root is y3 = 0 which gave us the disease free equilibrium Γ1.
Number of endemic equilibrium for human in Γ2 is given in the following theorem.

Theorem 3.3. Polynomial (16) has
1) No positive root if R0y > 1 and R2 > 1
2) Unique positive root if R0y < 1
3) Two distinct real positive root if R0y > 1, R2 < 1 and a22 − 4a1 > 0
4) Two equal real positive root if R0y > 1, R2 < 1 and a22 − 4a1 = 0.

Proof: The proof is a direct consequences of possibility positive root of two degree polynomial.
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Last equilibrium is the endemic equilibrium in cattle and human population, let call it as Γ3. This
equilibrium is given by

Γ3 = (x1, x2, x3, y1, y2, y3, y4) =
(
x×1 , x

×
2 , x

×
3 , y

×
1 , y

×
2 , y

×
3 , y

×
4

)
, (17)

where x×1 , x
×
2 , x

×
3 is given by ω2, while y×1 , y

×
2 , y

×
4 are

y×1 =
µy

b1x3 + b2y3 + µy

y×2 =
y3
(
γ b1x3 + γ b2y3 + b1µyx3 + b2µyy3 + δ µy + γ µy + µy

2
)

(b1x3 + b2y3 + δ + µy)α

y×4 =
γ y3

b1x3 + b2y3 + δ + µy
,

and y×3 is the positive root of the following polynomial.

H2(y3) =

3∑
i=0

diy
i
3 = 0, (18)

where

d3 = b22(α+ γ + µy)

d2 = b2
(
2α b1x3 + 2 γ b1x3 + 2 b1µyx3 + α δ + αγ − α b2 + 2αµy + δ µy + 2 γ µy + 2µy

2
)

d1 = (b1x3 + µy)
(
α b1x3 + γ b1x3 + b1µyx3 + α δ + αγ + αµy + δ µy + γ µy + µy

2
)

(1− C1)

d0 = −α b1x3 (b1x3 + δ + µy)

C1 =
α b2 (2 b1x3 + δ + µy)

(b1x3 + µy) (α b1x3 + γ b1x3 + b1µyx3 + α δ + αγ + αµy + δ µy + γ µy + µy2)
.

Based on the Descartes rules of sign, the number of possible positive root of Polynomial ( 18) is given in the
following Figure 2. It can be seen that there is always a possibility of the existence of endemic equilibria
whenever BTB exist in cattle population.

Figure 2: Maximum number of positive roots of polynomial 18.

In the next section, we will further analyze the sensitivity of the basic reproduction umber R0 in Equation
(11) and followed with autonomous simulation of System 1.

4. NUMERICAL SIMULATION

Numerical simulation of the model 1 in this section are carried out using MATLAB and MAPLE together
with a set of parameter given by

Γ = {µx =
1

15× 365
, µy =

1

65× 365
, bx =

0.25

1000
, b1 =

0.5

1000
, b2 =

0.1

1000
, αx =

1

2× 365
, α =

1

6× 365
,

γ =
1

8× 365
, δ =

1

3× 365
, ρ = 0.5} (19)

except it is stated differently. With this set of parameter, we hadR0 = max{R0x,R0y} = {1.2, 1.59} = 1.59.
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Figure 3: Sensitivity of R0x respect to αx and bx. The
black curve is when R0x = 1. Above black curve is
when R0x > 1, and R0x < 1 below black curve.

Figure 4: Sensitivity of R0y respect to γ and b2. The
black curve is when R0y = 1. The left hand side area
of the black curve is when R0x > 1, and R0x < 1 in
the right hand side.

We examine the effect of some parameters which still possible to varying with human intervention to the
magnitude of R0. The first simulation is given to see how R0x affected with the change of bx and αx. Using
the set of parameters mentioned before, except bx and αx, the sensitivity of R0x is given in Figure 3.

Since ∂R0x

∂bx
= αx

µx(αx+µx)
> 0, and ∂R0x

∂αx
= bx

(αx+µx)2
> 0, then we can conclude that R0x will decrease

whenever bx and αx reduced. bx which present the probability of success infection of BTB can be reduced
using several intervention, such as with vaccination, quarantine, etc. In the other hand, reducing αx related
to some intervention to prolong the incubation period of BTB, for an example with treatment intervention.
The sensitivity diagram for this scenario can be seen in Figure 3.

Using these results, the autonomous simulation for system 1 using several values of bx performed in
Figure 5. It can be seen from Figure 5 that enlarging value of bx will end up in an endemic state (red curve).
In this scenario, the endemic state Γ2 is exist and stable, since we have that R0x < 1 but R0y > 1.

The next simulation is to see how R0y changed respect to γ and b2 as shown in Figure 4. Similar with
previous analysis, since ∂R0x

∂b2
=

α (δ+µy)
µy(α+µy)(γ+δ+µy)

> 0, then increasing value of b2 will increase R0y . In

the other hand, since ∂R0x

∂γ = − α b2(δ+µy)

µy(α+µy)(gm+δ+µy)
2 < 0, we have that increasing value of γ or in this

case related to the recovery rate will reducing value of R0y . Since b2 is the infection parameter that appear
in human model only, reducing b2 is highly related to an intervention that related to an effort to reduce
the probability of success infection, such as with reducing duration of contact between human with medical
mask, quarantine to infected individual, etc. Our result also suggest that increase value of γ could reduce
R0y which related to an effort to accelerate the recovering period, for an example with increasing the quality
of hospital, medicine to cure infected individual, or another interventions.

The autonomous simulation for various value of γ that effect value of R0y is performed in Figure 6. It
is shown that although we succeed to reduce R0y until less than one with proper value of γ, the endemic
equilibrium Ω3 still exist since the value of R0x is still larger than one. This result confirm our analytical
result in previous section that address the endemic situation of BTB could be eliminated only with partial
intervention in both cattle and human populations.
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Figure 5: The dynamic of susceptible cattle (left), exposed
cattle (center) and infected cattle (right) with various bx.
The red curve is for R0x(bx = 0.25/1000) = 1.207, and
R0x(bx = 0.15/1000) = 0.725 for the blue curve.
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Figure 6: The dynamic of infected cattle (left), infected
human y3 (center) and infected human z3 (right) with various
γ. The red curve is for R0y(γ = 1/(8× 365) = 1.598, and
R0y() = γ = 1/(2× 365 = 0.892 for the blue curve.

5. CONCLUSIONS

A mathematical model that describes the spread of BTB among human and cattle populations has been
formulated using an eleven-dimensional dynamical system. The main idea is to separate human individual
in two big population based on their place for daily activity, that is in the cattle area (with possible contact
with cattle) and in non-cattle area. The model developed in this article applies mostly to area that had above
condition. Compared to many previous BTB models, this work contained three types of incident, that is
between cattle to cattle, human to human, and cattle to human.

The basic reproduction number has been computed as the spectral radius of the next-generation matrix
of related model. Sensitivity analysis has been performed and with the results showing that when the basic
reproduction number on cattle is larger than one, then BTB will always exist in cattle and human population,
even though the basic reproduction number in human is less than one. Also it was observed that several
interventions could be consider to prevent or reduce the endemicity of BTB, such as reducing infection
probability with medical mask intervention, quarantine on cattle, etc.
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